Characterization of modified antisense oligonucleotides in Xenopus laevis embryos.

نویسندگان

  • Kim A Lennox
  • Jaime L Sabel
  • Maegan J Johnson
  • Bernardo G Moreira
  • Cherisa A Fletcher
  • Scott D Rose
  • Mark A Behlke
  • Andrei L Laikhter
  • Joseph A Walder
  • John M Dagle
چکیده

A wide variety of modified oligonucleotides have been tested as antisense agents. Each chemical modification produces a distinct profile of potency, toxicity, and specificity. Novel cationic phosphoramidate-modified antisense oligonucleotides have been developed recently that have unique and interesting properties. We compared the relative potency and specificity of a variety of established antisense oligonucleotides, including phosphorothioates (PS), 2'-O-methyl (2'OMe) RNAs, locked nucleic acids (LNAs), and neutral methoxyethyl (MEA) phosphoramidates with new cationic N,N-dimethylethylenediamine (DMED) phosphoramidate-modified antisense oligonucleotides. A series of oligonucleotides was synthesized that targeted two sites in the Xenopus laevis survivin gene and were introduced into Xenopus embryos by microinjection. Effects on survivin gene expression were examined using quantitative real-time PCR. Of the various modified oligonucleotide designs tested, LNA/PS chimeras (which showed the highest melting temperature) and DMED/phosphodiester chimeras (which showed protection of neighboring phosphate bonds) were potent in reducing gene expression. At 40 nM, overall specificity was superior for the LNA/PS-modified compounds compared with the DMED-modified oligonucleotides. However, at 400 nM, both of these compounds led to significant degradation of survivin mRNA, even when up to three mismatches were present in the heteroduplex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification, Characterization, and Effects of Xenopus laevis PNAS-4 Gene on Embryonic Development

Apoptosis plays an important role in embryonic development. PNAS-4 has been demonstrated to induce apoptosis in several cancer cells. In this study, we cloned Xenopus laevis PNAS-4 (xPNAS-4), which is homologous to the human PNAS-4 gene. Bioinformatics analysis for PNAS-4 indicated that xPNAS-4 shared 87.6% identity with human PNAS-4 and 85.5% with mouse PNAS-4. The phylogenetic tree of PNAS-4 ...

متن کامل

Maternal Interferon Regulatory Factor 6 is required for the differentiation of primary superficial epithelia in Danio and Xenopus embryos.

Early in the development of animal embryos, superficial cells of the blastula form a distinct lineage and adopt an epithelial morphology. In different animals, the fate of these primary superficial epithelial (PSE) cells varies, and it is unclear whether pathways governing segregation of blastomeres into the PSE lineage are conserved. Mutations in the gene encoding Interferon Regulatory Factor ...

متن کامل

Effect of antisense oligonucleotides on the expression of hepatocellular bile acid and organic anion uptake systems in Xenopus laevis oocytes.

A Na(+)-dependent bile acid (Na+/taurocholate co-transporting polypeptide; Ntcp) and a Na(+)-independent bromosulphophthalein (BSP)/bile acid uptake system (organic-anion-transporting polypeptide; oatp) have been cloned from rat liver by using functional expression cloning in Xenopus laevis oocytes. To evaluate the extent to which these cloned transporters could account for overall hepatic bile...

متن کامل

Xenopus glucose transporter 1 (xGLUT1) is required for gastrulation movement in Xenopus laevis.

Glucose transporters (GLUTs) are transmembrane proteins that play an essential role in sugar uptake and energy supply. Thirteen GLUT genes have been described and GLUT1 is the most abundantly expressed member of the family in animal tissues. Deficiencies in human GLUT1 are associated with many diseases, such as metabolic abnormalities, congenital brain defects and oncogenesis. It was suggested ...

متن کامل

Neural and eye-specific defects associated with loss of the Imitation Switch (ISWI) chromatin remodeler in Xenopus laevis

Imitation Switch (ISWI) is a member of the SWI2/SNF2 superfamily of ATP-dependent chromatin remodelers, which regulate transcription and maintain chromatin structure by mobilizing nucleosomes using the energy of ATP. Four distinct ISWI complexes have been identified in Xenopus oocytes. The developmental role of Xenopus ISWI, however, has not previously been investigated in vivo. Here we report ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Oligonucleotides

دوره 16 1  شماره 

صفحات  -

تاریخ انتشار 2006